Riemannian Polyhedra and Liouville-Type Theorems for Harmonic Maps
نویسندگان
چکیده
منابع مشابه
Liouville theorems for harmonic maps
Recently there has been much interest in the Liouville type theorems for harmonic maps. For a detailed survey and progress in this direction, see the works by Hildebrandt [4], Eells and Lemaire [2]. Here we would like to mention that for all known results, the conditions on the harmonic maps can be divided into two kinds. The first of these conditions concerns the finiteness of the energy of th...
متن کاملLiouville Theorems for Dirac - Harmonic Maps
We prove Liouville theorems for Dirac-harmonic maps from the Euclidean space Rn, the hyperbolic space Hn and a Riemannian manifold Sn (n ≥ 3) with the Schwarzschild metric to any Riemannian manifold N .
متن کاملA Liouville theorem for harmonic maps and
A Liouville theorem is proved which generalizes the papers of Hu, MP].
متن کاملLiouville-Type Theorems for Some Integral Systems
/2 ( ) ( ) u u where is the Fourier transformation and its inverse. The question is to determine for which values of the exponents pi and qi the only nonnegative solution (u, v) of (1) and (2) is trivial, i.e., (u; v) = (0, 0). When 2 , is the case of the Emden-Fowler equation 0 , 0 u u u k in N (5) When ) 3 )( 2 /( ) 2 ( 1 N N N k , it has been prove...
متن کاملRegularity Theorems and Energy Identities for Dirac-harmonic Maps
We study Dirac-harmonic maps from a Riemann surface to a sphere Sn. We show that a weakly Dirac-harmonic map is in fact smooth, and prove that the energy identity holds during the blow-up process.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis and Geometry in Metric Spaces
سال: 2014
ISSN: 2299-3274
DOI: 10.2478/agms-2014-0012